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Markov Chains 

i.e. a random walk on the graph G=(Ω, E):
where (x,y)∈E iff can get from x to y by

swapping adjacent cards
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Card Shuffling

5 n 1 7 3... i j ... n-1 2 6

- pick a pair of adjacent cards uniformly at random
- put j ahead of i with probability 1/2

Converges to the uniform distribution
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Card Shuffling

How long until mixed?

5 n 1 7 3... i j ... n-1 2 6

- pick a pair of adjacent cards uniformly at random
- put j ahead of i with probability 1/2
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= ½  ∑  | Pt(x,y) - π(y)|

Using Markov Chains

How long before
 for all x∈Ω,   Pt(x,*)  and π are close?

Measure closeness using Total Variation Distance:

| Pt(x,*), π |TV  =  ½  || Pt(x,*), π ||1

y∈Ω

The time it takes for a Markov chain to converge 
within ε of π is called its mixing time:

τ(ε) = max min { t : | Pt(x,*), π |TV  <  ε  }
x∈Ω
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Using Markov Chains

We generally want the mixing time to be poly(n), where 
in this case n = # cards

|Ω| = n! whereasApplications
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Previous work: Uniform sampling

How long does it take to mix?

τ= O(n3 log n) - Diaconis and Shashahani (1981),
                          Diaconis and Saloff-Coste (1993)
τ= Ω(n3 log n) - Wilson (2004)
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Mixing time ≤ Coupling time



Previous work: Uniform sampling

How long does it take to mix?

Permutations:   

5 6 3 7 2 1 4

0 0 0 0 0 1 0

0 0 0 0 1 1 0

0 0 1 0 1 1 0

0 0 1 0 1 1 1

1 0 1 0 1 1 1

1 1 1 0 1 1 1

1 1 1 1 1 1 1
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Ai,j = 1 iff  j ≤ i
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Self-Organizing Lists

Example: Pizza Delivery 
- List of clients and addresses
- O(n) search time

- Each client has a different frequency of ordering 
(unknown at the beginning)

- Goal: obtain a list with most frequent clients first

---- (Move Ahead One Algorithm)
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Self-Organizing Lists

Example: Pizza Delivery 
- List of clients and addresses
- O(n) search time

Sarah Bob ... NancyTonyAlice...

Move Ahead One 
Algorithm

Nearest Neighbor 
transpositions<=>

How long does it take the list to get organized?

= Mixing Time!
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Biased Card Shuffling

5 n 1 7 3... i j ... n-1 2 6

- pick a pair of adjacent cards uniformly at random
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Biased Card Shuffling

5 n 1 7 3... i j ... n-1 2 6

- pick a pair of adjacent cards uniformly at random
- put j ahead of i with probability pj,i = 1- pi,j

Converges to: π(σ) = Π       / Z
i<j:

σ(i)>σ(j)
 pji
pij

If pi,j ≥ 1/2   ∀ i < j, then 
π favors increasing permutations
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Previous Work

Benjamini, Berger, Hoffman, Mossel (2005):
If pi,j = p > 1/2   ∀ i < j, then θ(n2) steps

Fill (2003): Gap problem

 - proved this conjecture for n ≤ 4

Conjecture:
If the {pij} are positively biased, then M is rapidly mixing.

- Conjecture:
   If {pij} satisfies a “monotonicity” condition,
   then the spectral gap is max. when pij=1/2 ∀ i,j 
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Previous work: Biased sampling
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- swap them with prob. p if i<j, with prob. 1-p otherwise
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Our Results

•Two classes - M rapidly mixing

1. pi,j = ri ≥ 1/2   ∀ i < j

2. {pi,j} have tree structure

•Thm: M is not always rapidly mixing.

We identify {pi,j} that are positively biased
but where M requires exponential time to mix!
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Thm 1: If pi,j = ri ≥ 1/2   ∀ i < j, then M is rapidly mixing.

Proof of Thm 1

Applications

Previous Work

New Results

Card Shuffling



Thm 1: If pi,j = ri ≥ 1/2   ∀ i < j, then M is rapidly mixing.

Proof outline:
A. Define auxiliary Markov chain M’
B. Show M’ is rapidly mixing
C. Compare the mixing times of M and M’

Proof of Thm 1

Applications

Previous Work

New Results

Card Shuffling



Thm 1: If pi,j = ri ≥ 1/2   ∀ i < j, then M is rapidly mixing.

Proof outline:
A. Define auxiliary Markov chain M’
B. Show M’ is rapidly mixing
C. Compare the mixing times of M and M’

Proof of Thm 1

Applications

Previous Work

New Results

Card Shuffling



Thm 1: If pi,j = ri ≥ 1/2   ∀ i < j, then M is rapidly mixing.

Proof outline:
A. Define auxiliary Markov chain M’
B. Show M’ is rapidly mixing
C. Compare the mixing times of M and M’

Proof of Thm 1

M’ can swap pairs that are not nearest neighbors

- maintain same stationary distribution
- Define the probability of swapping i and j 
that are not nearest neighbors...
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P’(σ,τ)= p2,3
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5 6 3 1 2 7 4

Permutation σ:

5 6 2 1 3 7 4

Permutation τ:

same stationary 
distribution:

M’ can swap pairs that are not nearest neighbors

π(σ) = Π       / Z
i<j:

σ(i)>σ(j)
 pji
pijApplications

Previous Work

New Results

Card Shuffling



Proof of Thm 1

- Can swap i and j across multiple smaller elements 
with probability pi,j

P’(σ,τ)= p2,3

5 6 3 1 2 7 4

Permutation σ:

5 6 2 1 3 7 4

Permutation τ:

Thm 1: If pi,j = ri ≥ 1/2   ∀ i < j, then M is rapidly mixing.

Location of element i is independent of 
the location of all larger elements!

Idea:
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I(2)

  • 0 ≤  Iσ(i) ≤ n - i

• I is a bijection from Sn to T ={(x1,x2,...,xn): 0 ≤  xi ≤  n-i}

Inversion Tables

We will define M’ as a MC on the Inversion Tables.
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Iσ(i) = # elements j > i appearing before i in σ

  • 0 ≤  Iσ(i) ≤ n - i

• I is a bijection from Sn to T ={(x1,x2,...,xn): 0 ≤  xi ≤  n-i}

Inversion Tables

What happens when you subtract 1 from xi?
- swap element i with the first j>i  to the left
- happens w.p. ri 

Applications
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Proof of Thm 1

M’ samples from {(x1,x2,...,xn): 0 ≤  xi ≤  n-i }:
 - choose a column i uniformly
 - w.p. ri:           subtract 1 from xi (if possible)
 - w.p. 1- ri:      add 1 to xi (if possible)

Proof outline:
A. Define auxiliary Markov chain M’
B. Show M’ is rapidly mixing
C. Compare the mixing times of M and M’
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Permutation σ:

Proof outline:
A. Define auxiliary Markov chain M’
B. Show M’ is rapidly mixing
C. Compare the mixing times of M and M’

Location of element i 
is independent of the 
location of all larger 
elements!

Idea:
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Proof of Thm 1

M is rapidly mixingM’ rapidly mixing

Proof outline:
A. Define auxiliary Markov chain M’
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C. Compare the mixing times of M and M’
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Our Results

•Two classes - M rapidly mixing

1. pi,j = ri ≥ 1/2   ∀ i < j

2. {pi,j} have tree structure

•Thm 2: M is not always rapidly mixing.

We identify {pi,j} where {pi,j} are positively biased
but M requires exponential time to mix!
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Previous Work

New Results
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Slow Mixing Results

•Thm 2: M is not always rapidly mixing.

Permutation σ:

{       1   if   i < j ≤ 2  
 n OR       < i < j 2  

 n

pij =

1 62 7 83 9 54 10

1’s and       0’s2  
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       ??    else
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So each choice of pij where i ≤      < j2  
 n

determines the bias on square (i,n-j+1)

Special Case: Bijection with staircase walks
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Staircase Walks

x

- each box has a different bias px

- M can add a box or remove a 
box according to px

Tile-based Self-Assembly:

tiles can attach or detach at corners
 - attach w.p. px
 - detach w.p. 1- px

rapidly mixing  <=> self-assembles efficiently

Applications

Previous Work

New Results
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Fluctuating Bias:

Thm 4: If px ≥ p  ( p const. > 1/2) 
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Thm 5: There exists {px} s.t px >1/2 for all x but mixing 
time is exponential in n.
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Staircase Walks

x
Fluctuating Bias:

Thm 4: If px ≥ p  ( p const. > 1/2) 
then rapidly mixing.

Thm 5: There exists {px} s.t px >1/2 for all x but mixing 
time is exponential in n.

provides slow mixing example for biased permutations!

Applications

Previous Work

New Results

Card Shuffling



Slow Mixing

Thm 5: There exists {px} s.t px >1/2 for all x but mixing 
time is exponential in n.

1/2	 +	 1/n2

M=	 n2/3

1-δ

Applications

Previous Work

New Results

Card Shuffling



Slow Mixing Results

Bijection with staircase walks:

•Thm 2: M is not always rapidly mixing.

{            1         if   i < j ≤ 2  
 n OR     < i < j 2  

 n

pij =        1/2+1/n2  if   i+(n-j+1) < MSo each choice of pij where i ≤      < j2  
 n

determines the bias on square (i,n-j+1)

1/2	 +	 1/n2

M=	 n2/3

          1- δ      otherwise   

1-δ

Applications

Previous Work

New Results

Card Shuffling



Thank you!



Staircase Walks

Introduction

Biased 
Permutations

Nanoscience

Colloids

x

Thm [Benjamini, Berger, Hoffman, Mossel]: 
If px=p for all x, then M is rapidly 
mixing.

Thm 3 [GPR]: If px=p for all x, then M is rapidly mixing.

Uniform Bias:

proof by coupling with exponential distance metric
new path coupling theorem

*simpler, generalizes easily*
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Proof of Thm 1

M’ can swap pairs that are not nearest neighbors
- maintain same stationary distribution

5 6 3 1 2 7 4

Permutation σ:

5 6 1 2 3 7 4

Permutation τ’:

P’(σ,τ)
P’(τ,σ)

π(τ)       
π(σ)       =

Thm 1: If pi,j = ri ≥ 1/2   ∀ i < j, then M is rapidly mixing.
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Proof of Thm 1

M’ can swap pairs that are not nearest neighbors
- maintain same stationary distribution

p3,2
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=

5 6 3 1 2 7 4

Permutation σ:

5 6 3 1 2 7 4

Permutation σ:

P’(σ,τ)
P’(τ,σ)

π(τ)       
π(σ)       =

P’(σ,τ)= p2,3

=
 π(τ)     π(τ’)    π(τ’’)
 π(τ’)    π(τ’’)    π(σ)(( () ) )

Thm 1: If pi,j = ri ≥ 1/2   ∀ i < j, then M is rapidly mixing.



Previous work: Uniform sampling

How long does it take to mix?

Permutations:   

5 6 3 7 2 1 4

0 0 0 0 0 1 0

0 0 0 0 1 1 0

0 0 1 0 1 1 0

0 0 1 0 1 1 1

1 0 1 0 1 1 1

1 1 1 0 1 1 1

1 1 1 1 1 1 1

Applications

Previous Work

New Results

Card Shuffling

1 4 5 3 6 2 7

1 0 0 0 0 0 0

1 0 0 0 0 1 0

1 0 0 1 0 1 0

1 1 0 1 0 1 0

1 1 1 1 0 1 0

1 1 1 1 1 1 0

1 1 1 1 1 1 1

Coupling time (perm) ≤ max {Coupling time(lattice paths)}


